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Abstract. Taking a `set' to be a type together with an equivalence
relation and adding an extensional choice axiom to the logical framework
(a restricted version of constructive type theory) it is shown that any `set'
can be well-ordered. Zermelo's �rst proof from 1904 is followed, with a
simpli�cation to avoid using comparability of well-orderings. The proof
has been formalised in the system AgdaLight.

1 Introduction

The well-ordering theorem is a proposition of set theory stating that any set
can be well-ordered. A set M is well-ordered if there is a binary relation < on
M which is a linear order and for which every non-empty subset of M has a
minimal element.

Georg Cantor, in the beginnings of his founding work on set theory, took this
as a fact and called it the well-ordering principle. Later, he made attempts to
prove it, thus suggesting that it should be regarded a theorem.

The �rst successful proof was displayed by Ernst Zermelo in a paper [1]
published in 1904. In this proof he had used a principle which was later called
the Axiom of Choice � he was the �rst to explicitly state this principle in a paper.
A big debate over it arose between mathematicians in the following years.

The theorem itself was also controversial, since, for example, it implied that
the set of real numbers could be well-ordered, though no such ordering was
known1. Although that situation was controversial, it was not contradictory,
since the principle of excluded middle allowed one to prove statements about
the existence of an object, without requiring one to exhibit a sample of the
object whose existence is proved.

The two mentioned principles, the one of excluded middle and the one of
choice, were subject of much discussion in the �eld of foundation of mathematics
during a large part of the 20th century, but in spite of that no one came to the
idea that they could be simply correlated, and in this way: the principle of choice
implies the principle of excluded middle. This was concluded for the �rst time
by Diaconescu in 1975 for topos theory [4]; later there followed proofs in various
other theories.

1 Later [2] it was even shown that such an ordering can not be de�ned. More precisely,
�there is no formula of ZF set theory which can be proved in ZFC to be a well-ordering
of the reals� [3] p.423



1.1 Motivation for the Present Work

The goal of this work was to investigate whether it is possible to use type theory
strengthened by an extensional choice axiom (ExtAC), instead of set theory, to
prove the well-ordering theorem.

This addition allows us to derive the law of excluded middle (LEM). Thus,
every proposition is decidable (in a constructive sense). As subsets in type theory
are usually de�ned as propositional functions, we can equivalently de�ne a subset
to be a function into N2, in which case the collection of subsets of a set, the
power-set, is a set, hence it is possible to quantify over it.

Having ExtAC also allows us to de�ne the function γ from Zermelo's proof,
which takes a nonempty subset into one of its elements. This, and it being very
clear and intuitive, makes Zermelo's �rst proof from 1904 a good candidate to
follow. His second proof from 1908 [5], much like modern ones, use some set
theoretic machinery which clutters the intuition behind it.

2 The Framework

We will work in constructive type theory (CTT) as explained in [6,7]. The the-
ory we shall be concerned with will contain a base type Set and the constants
Π,Σ,N0, N1, N2 : Set, together with their introduction and elimination rules.
To these we will add the extensional axiom of choice and a constant T which
lifts boolean values to propositions, de�ned by pattern-matching:

T : N2 → Set
T 0 ≡ N0

T 1 ≡ N1

We also need a small set universe containing codes for N0 and N1, for de�ning
T and =2 (below) by pattern-matching and for having 0 6= 1.

2.1 Axioms of Choice

The bene�t of using an intensional theory like CTT is that we can make more
distinctions, such as the one between intensional and extensional axioms of
choice.

The �rst of these (IntAC) can be proved in the type theory. It reads:

∀A,BSet. ∀RA→B→Set.
(
∀xA. ∃yB . R x y

)
→ ∃fA→B . ∀xA. R x fx (1)

This is not surprising, because in type theory a proof of
(
∀xA. ∃yB . R x y

)
is

exactly a function as the one required.



The second, the extensional axiom of choice (ExtAC), knows no justi�cation
in type theory. It reads:

∀A,BSet. ∀RA→B→Set. ∀ =A→A→Set
A . ∀ =B→B→Set

B .

(=A equivalence on A) → (=B equivalence on B) →(
∀x, yA. x =A y → ∀zB . R x z → R y z

)
→(

∀x, yB . x =B y → ∀zA. R z x → R z y
)
→(

∀xA. ∃yB . R x y
)
→

∃fA→B .
(
∀xA. R x fx

)
∧

(
∀a, bA. a =A b → fa =B fb

)
(2)

In words, what is required here in addition is that the function f must respect
whatever equivalence relations may be de�ned on A and B, which the relation
R preserves. It is this ability that allows one to `smuggle in' non-constructive
principles, by encoding them into an equivalence relation on which ExtAC is
applied.

2.2 Derivation of the Law of Excluded Middle

The possibility of deriving the law of excluded middle (LEM) from ExtAC is well
known. It has been carried out in various theories: topos theory [4], intuitionistic
set theory [8] and intensional type theory [9].

The proof here is closest to the one from [10], the di�erence being that we
use a (non-substitutive) equivalence relation, instead of the set Id. This relation,
=2, is de�ned only in terms of T and the elimination rules of N2; it is de�ned to
be N1 for two elements of N2 when they reduce to the same canonical element,
and N0 when they do not reduce to the same canonical element.

Now, let ExtAC be given and let P be a proposition (P : Set). De�ne a
relation R (R : Rel N2) as follows:

R a b ≡ a =2 b ∨ P

We show that there exists a function f : N2 → N2 such that P ↔ f0 =2 f1,
meaning P is decidable.

We will use (2); let us satisfy the hypotheses: for A,B take N2, for R take the
R de�ned above, for the equivalence on A take R again and for the equivalence
on B take =2. Clearly, R is an equivalence relation on N2.

By symmetry and transitivity of R, R is left-extensional for R itself. By
transitivity of R and or-introduction, R is right-extensional for =2. By re�exivity
of R, for any x : N2 there exists a y : N2 such that R x y, namely x is such a y
itself.

Thus, we get the following consequence of (2):

∃fN2→N2 .
(
∀xN2 . R x fx

)
∧

(
∀a, bN2 . R a b → fa =2 fb

)
(3)



From the de�nition of R we have P → R 0 1. From the right conjunct of (3)
we have R 0 1 → f0 =2 f1. Thus

P → f0 =2 f1 (4)

To establish the other direction, �rst we prove ∀a, bN2 . fa =2 fb → R a b.
Let a, b be given and let fa =2 fb. From the fact that R is right-extensional for
=2 and the left conjunct of (3) we get R a fb. From the same conjunct and the
symmetry of R we get R fb b. From these and the transitivity of R we get R a b.

From the de�nition of R and decidability of =2 we get R 0 1 → P . From this
and the conclusion of the previous paragraph

f0 =2 f1 → P (5)

(4) and (5) establish the decidability of P.

3 The Theorem

We present the de�nition of an extensional set and its subsets and de�ne opera-
tions on them. After further de�nitions of special kinds of subsets, we state the
well-ordering theorem in terms of those. The proof follows, divided into several
propositions which are numbered in the same way as their parallels in Zermelo's
proof from 1904 � the di�erence being that our proof is more detailed.

3.1 Representation of Sets and Subsets

We introduce the notion of extensional set, Xet2. An extensional set is an object
of type Set, accompanied by a relation, accompanied by a proof that the relation
is an equivalence one. Two such objects are equal if their Set-objects are equal
and their relations are equal.

Xet type

All judgements � we make will be hypothetical, i.e. of the form

� [X : Set][=X : X → X → Set][=X equivalence on X]

but we will make this hypotheticalness implicit, in order to lighten the notation.
So, let an object (X, =X , equivX) : Xet be given.

We de�ne

ext : (X → Set) → Set

ext f ≡ ∀a, bX . a =X b → fa → fb

2 As pointed out by one of the referees, this is just the known notion of setoid ; see
[11], for example.



Subsets of a Xet object will be the boolean functions on X that are exten-
sional:

P : Set
P ≡ Σ (X → N2, ext ([U, x]T (Ux)))

Inhabited, or non-empty, subsets are subsets that contain an element:

P ′ : Set nonempty : P → Set

P ′ ≡ Σ (P,nonempty) nonempty U ≡ ∃aX . T (U.1 a)

The su�x .n of U is a selector, which picks the n-th component of an object of
type Σ.

We also need some operations:

∈ : X → P → Set ∈′ : X → P ′ → Set
a ∈ U ≡ T (U.1 a) a ∈′ U ≡ a ∈ U.1

⊆ : P → P → Set = : P → P → Set

U ⊆ V ≡ ∀aX . a ∈ U → a ∈ V U = V ≡ U ⊆ V ∧ V ⊆ U

⊆′ : P ′ → P ′ → Set =′ : P ′ → P ′ → Set
U ⊆′ V ≡ U.1 ⊆ V.1 U =′ V ≡ U.1 = V.1

And some syntactic shortcuts:

∀a ∈ U. � ≡ ∀aX . a ∈ U → �

∃a ∈ U. � ≡ ∃aX . a ∈ U ∧�

LEM allows us to create subsets which consist of elements of X which satisfy
a given extensional property; we will write this in a form of set comprehension:

{|} : ExtPred → P
{x|P} ≡ (theSubset P.1, theExt P.1)

where x is a placeholder for the free variable in P.1 (we want to mirror set
theoretic notation), where ExtPred ≡ Σ (X → Set, ext) and where

theSubset : (X → Set) → (X → N2)

theSubset P ≡ IntAC X N2

(
[x, b] Tb ↔

(
Px ∧ ∀yX . y =X x → Py

))
(· · · )

theExt : (P : X → Set) → ext ([x]T ((theSubset P )x))
theExt P ≡ (· · · )



To complete the proof of theSubset we need to prove ∀xX . ∃bN2 . Tb ↔(
Px ∧ ∀yX . y =X x → Py

)
, but this is immediate if we apply LEM to the right

hand side of the equivalence � for b take 1 if it holds, 0 if it does not hold. The
right hand side of the equivalence also gives us theExt immediately.

All predicates we shall apply comprehension on will be extensional.
Now, we have notation su�cient to mimic a set theoretic proof. We will just

de�ne a few more operators:

{ : P → P \ : P → P → P ∩ : P → P → P
{ U ≡ {x | x 6∈ U} U \ V ≡ {x | x ∈ U ∧ x 6∈ V } U ∩ V ≡ {x | x ∈ U ∧ x ∈ V }

{} : X → P ∪ : P → P → P ∅ : P
{a} ≡ {x | x =X a} U ∪ V ≡ {x | x ∈ U ∨ x ∈ V } ∅ ≡ {x | N0}

3.2 Statement of the Theorem

We will need to be able to quantify over relations, thus we need decidable re-
lations. We can lift a decidable relation into a normal one and vice-versa, since
every proposition is decidable.

DRel : Set Rel : Type

DRel ≡ X → X → N2 Rel ≡ X → X → Set

dRel : DRel → Rel rRel : Rel → DRel
dRel D ≡ [a, b] T (D a b) rRel R ≡ · · ·

For the de�nition of rRel we use IntAC; for details see the formalisation.
Now, some classes of relations on subsets. When a relation is trichotomous,

transitive and linear:

trich : P → Rel → Set
trich U < ≡ ∀a, b ∈ U. (a < b ↔ b 6< a ∧ a 6=X b) ∧ (a =X b ↔ a 6< b ∧ b 6< a)

trans : P → Rel → Set
trans U < ≡ ∀a, b, c ∈ U. a < b → b < c → a < c

linear : P → Rel → Set
linear U < ≡ (trich U <) ∧ (trans U <)

We also need a property expressing that a subset has a minimal element:

hasLeast : P → Rel → Set
hasLeast U < ≡ ∃a ∈ U. ∀b ∈ U. b 6< a



And a property expressing that a subset is well-ordered:

wellOrdered : P → Rel → Set

wellOrdered U < ≡ (linear U <) ∧
(
∀V P′

. V.1 ⊆ U → hasLeast V.1 <
)

We are ready to state

Theorem 1 (Zermelo's Well-Ordering) Any extensional set can be well-ordered.(
∃RDRel. ∀UP . wellOrdered U (dRel R)

)
3.3 Proof

We will now proceed with the proof following the one from 1904, enumerating
the steps like it is done there. The key idea will be to use a choice function,
γ, in de�ning a well-ordering relation < in such a way that γ picks the <-least
element of any subset.

(2) The Function γ. There is a function which takes a non-empty subset of
X and gives an element of X which is contained in the subset. This function is
extensional in respect to =′,=X . Formally:

∃γP
′→X .

(
∀UP′

. γU ∈′ U
)
∧

(
∀U, V P′

. U =′ V → γU =X γV
)

Proof. We will use the extensional axiom of choice. Put P ′ for A, X for B,
(x ∈′ U) for R, =′ for =A and =X for =B . It is easy to see that =′ is an
equivalence relation, and =X is such by hypothesis. To get the desired function,
we need only prove the following three things:

� ∀U, V P′
. U =′ V → ∀zX . z ∈′ U → z ∈′ V . This we get immediately from

the de�nition of =′.
� ∀x, yX . x =X y → ∀WP′

. x ∈′ W → y ∈′ W . This is immediate from the
extensionality of subsets.

� ∀UP′
. ∃yX . y ∈′ U . This follows from the non-emptiness of U .

(3) γ-Sets. An initial segment of a subset, for a given element of X and a
relation, is the subset of all those elements which are in relation with the given
one. Formally:

IS : P → X → Rel → P
IS U a < ≡ {x | x ∈ U ∧ x < a}

A subset is called a γ-set, for a given relation, if it is well-ordered by the
relation and if for any element a therein, γ takes the complement of the initial
segment for a, into a itself. Formally:

GS : P → Rel → Set
GS U < ≡ (wellOrdered U <)∧(
∀a ∈ U. ∀nenonempty{(IS U a<). a =X γ

((
{ (IS U a <)

)
, ne

))



(4) Example Subsets of X Which Are γ-Sets. Suppose X is inhabited,
X ≡ {x | N1} is a subset containing all elements of X, ne : nonemptyX and take
the following subset:

M ′ : P m1 : X

M ′ ≡ {x | x =X m1} m1 ≡ γ (X , ne)

De�ne the ordering:

<1: Rel
x <1 y ≡ N0

It is easy to check that <1 makes M ′ a γ-set. Similarly, the subset {x | x =X

m1 ∨ x =X m2}, where m2 ≡ γ(X \ {m1}, ne′) and ne′ : nonempty(X \ {m1}),
is a γ-set.

(5) If M1, M2 Are Di�erent γ-Sets, Then One Is an Initial Segment
of the Other. Formally:

∀M1,M
P
2 . ∀ <1, <

Rel
2 . GS M1 <1 ∧ GS M2 <2 →

(M1 = M2) ∨ (∃x1 ∈ M1. S1x1 = M2) ∨ (∃x2 ∈ M2. S2x2 = M1)

where

S� ≡ [x]IS M� x <�

In the original paper, as well as modern papers like [12], this step is proven
by using the comparability of well-orderings, which grants that there is an order-
preserving injection from one of M1,M2 into the other. Then one proceeds to
prove that this injection must be the identity. As the comparability is not easier
to prove than the well-ordering theorem itself, we provide a direct proof using
well-founded induction.

Proof. Let M1, <1,M2, <2 be given and let them be γ-sets. We need the following
lemma:

Lemma 1. An initial segment of M1 is an initial segment of M2 or is M2; or

a smaller initial segment of M1 is M2.

∀x ∈ M1. (x ∈ M2 ∧ S1x = S2x) ∨ (∃x1 ∈ S1x. S1x1 = M2) ∨ (S1x = M2)

Proof. M1 is well-ordered, thus we can use well-founded induction on it3: for
P : X → Set, we have that (∀x ∈ M1. (∀y ∈ M1. y <1 x → Py) → Px) → ∀x ∈
3 Suppose that a subset U is well-ordered and not well-founded, take the minimal
element t of U for which P does not hold, and derive a contradiction. All the details
are in the formalisation.



M1. Px. For P we take the expression in the scope of the universal quanti�er
from the formulation of the lemma.

Let x ∈ M1 be given. We use the classical tautology (for R,A, B, C : X →
Set):

(∀xX . Rx → Ax ∨Bx ∨ Cx) →
(∀xX .Rx → Ax) ∨ (∃xX .Rx ∧Bx) ∨ (∃xX .Rx ∧ Cx) (6)

on the induction hypothesis, and get these 3 cases:

1. ∀y ∈ M1. y <1 x → (y ∈ M2 ∧ S1y = S2y). Thus, S1x ⊆ M2. We look into
the following two cases:
(a) S1x = M2.
(b) S1x 6= M2. S1x ⊆ M2. Let t be the least element of the subset M2 \ S1x

for <2. We will show that S1x = S2t:
� Let a ∈ S1x. Then a ∈ M2 and we need to show that a <2 t. If

a 6<2 t, then t <2 a or a =X t. a =X t is not possible as t 6∈ S1x
by de�nition. If t <2 a, t ∈ S2a and by the induction hypothesis
S2a = S1a ⊆ S1x 3 t, again a contradiction with the de�nition of t.
So, a ∈ S2t.

� Let b ∈ S2t. If b 6∈ S1x, then b ∈ M2\S1x and then, since t is minimal,
it must be that b 6<2 t, a contradiction with b ∈ S2t. So, b ∈ S1x.

We have that S1x = S2t. From S1,S2 being initial segments of the γ-sets
M1,M2, x =X γ({(S1x)) =X γ({(S2t)) =X t. Thus, S1x = S2x.

2. ∃y ∈ M1. y <1 x ∧ (∃x1 ∈ S1y. S1x1 = M2). Let such y, x1 be given. Then
x1 ∈ S1x, so we get the 2nd disjunct of Px.

3. ∃y ∈ M1. y <1 x∧ (S1y = M2). Taking y for x1, we immediately get the 2nd
disjunct of Px.

We use tautology (6) again, now on the lemma itself and thus get 3 cases:

1. ∀x ∈ M1. x ∈ M2 ∧ S1x = S2x. De�ne the following subsets:

S ≡ {y | ∃z ∈ M1. y ∈ S1z}
T1 ≡ M1 \ S

T2 ≡ M2 \ S

S is the subsets of all elements of M1 which belong to some initial segment
of M1. T1, T2 contain the remaining elements. From the hypothesis we have
M1 ⊆ M2 and S ⊆ M2. We will distinguish on the emptiness of T1, T2:
(a) T1 = ∅. As S ⊆ M1 and ∅ = M1 \ S, M1 = S.

i. T2 = ∅. As S ⊆ M1 ⊆ M2 and ∅ = M2 \ S, M2 = S = M1.
ii. T2 6= ∅. Let t be the least element of T2 for <2. We want to show

that S2t = S = M1:
� if a ∈ S2t, a <2 t, so a 6∈ T2, because t is the minimal of T2. As

a ∈ M2 and a 6∈ T2, a ∈ S.



� let a ∈ S; then a 6∈ T2. Does a ∈ M2 and a <2 t? a ∈ M1 ⊆ M2.
Let a 6<2 t:
• if t <2 a, then t ∈ S as, from the hypothesis, S1a = S2a; but,

t 6∈ S by de�nition.
• if a =X t, a ∈ T2, a contradiction.

Thus, a <2 t and a ∈ S2t.
(b) T1 6= ∅. We show that T1 can contain only one element: let t1, t2 ∈ T1

and, without loss of generality, let t1 <1 t2; then t1 ∈ S1t2, thus t1 ∈ S,
thus t1 6∈ T1, which is a contradiction. So, T1 has exactly one element;
call it t.
From M1 ⊆ M2 and the de�nitions of T1, T2, T1 ⊆ T2 and t ∈ T2.

i. T2 = {t}. Then M2 = S ∪ T2 = S ∪ T1 = M1.
ii. T2 6= {t}. Let t′ be the least element of the subset T2 \ {t}. Then

t <2 t′: if t′ =X t, then t ∈ T2 \{t}, a contradiction; if t′ <2 t, by the
main hypothesis S1t = S2t, so t′ ∈ S1t and t ∈ S, a contradiction.
Thus, t <2 t′ and we have that t is the minimal of T2 for <2. Using
this, like in case (a.ii) we get S = S2t and M1 = S ∪ {t} = S2t∪ {t}.
We show that M1 = S2t

′:
� if x ∈ M1, then x ∈ S2t or x =X t. If x ∈ S2t, then x <2 t <2 t′,

thus x ∈ S2t
′. If x =X t, then x <2 t′, thus x ∈ S2t

′.
� if x ∈ S2t

′, then x <2 t′. We look at the 3 cases:
• x =X t. Then x ∈ T1 ⊆ M1.
• x <2 t. Then x ∈ S2t = M1.
• t <2 x. Then t <2 x <2 t′, so t′ is not the minimal element of

T2 \ {t}.
2. ∃x ∈ M1. ∃x1 ∈ M1. x1 <1 x ∧ S1x1 = M2. Thus, M2 is an initial segment

of M1. QED
3. ∃x ∈ M1. S1x = M2. Again, M2 is an initial segment of M1. QED

(6) A Consequence. If two γ-sets have an element a in common, then their
initial segments for a are the same. Formally:

∀M1,M
P
2 . ∀ <1, <

Rel
2 . GS M1 <1 ∧ GS M2 <2 →

∀a ∈ M1 ∩M2 → (S1a = S2a)

Proof. We can use (5) to decide which of the γ-sets is an initial segment of the
other. The required follows from the de�nition of initial segment.

(7) X Is Well-Ordered. De�ne the following relation on X:

a < b ≡ ∃MP
a . ∃DDRel

a . GS Ma (dRel Da) ∧ a ∈ Ma∧
∀MP

b . ∀DDRel
b . GS Mb (dRel Db) → b ∈ Mb →

∃β.β ∈ Mb ∧ IS Mb β (dRel Db) = Ma



This relates two elements of X, if they are γ-elements and a γ-set containing the
�rst element is an initial segment of a γ-set containing the other.

Call x : X a γ-element if there exists a γ-set, for the relation <, which
contains it:

GE : X → Set

GE x ≡ ∃MP
γ . x ∈ Mγ ∧GS Mγ <

Let Lγ be the subset of all γ-elements:

Lγ : P
Lγ ≡ {x | GE x}

To establish that X is well-ordered, in the following 5 lemmas, we show that
Lγ is well-ordered and that X ⊆ Lγ. Recall that X is a subset containing all
elements of X.

(7-I) < Is Trichotomous on Lγ . First, we lighten the notation by writing
Ma ≺ Mb when Ma is an initial segment of Mb, and by omitting the relations,
which are always quanti�ed together with their corresponding γ-sets.

� Let a, b ∈ Lγ and a < b. Then there exist a γ-set Ma containing a, such that
for any Mb containing γ-set of b, Ma ≺ Mb.
If a =X b, then Ma is a containing γ-set of b as well, and we have Ma ≺ Ma,
which is not possible.
If b < a, then there exists Lb 3 b s.t. for every La 3 a, Lb ≺ La. If we put Lb

in place of Mb and Ma in place of La, we get both Lb ≺ Ma and Ma ≺ Lb,
which is not possible.

� Let a, b ∈ Lγ and b 6< a and a 6=X b. From b 6< a we have ∀Lb. ∃La. Lb 6≺ La.
We will use the fact that b is a γ-element, to extract a containing Wb, which
is a γ-set for <. We get that there exists a gamma set La 3 a such that
Wb 6≺ La. From step (5) we have that Wb = La or La ≺ Wb. In any case,
a ∈ Wb and we can use the hypotheses and the trichotomy of < on Wb to
complete the proof.

(7-II) < Is Linear. We need to show that < is transitive. Let a, b, c ∈ Lγ and
a < b, b < c. From ∃Ma. ∀Mb. Ma ≺ Mb and ∃Mb. ∀Mc. Mb ≺ Mc, we have
∃Ma. ∀Mc. Ma ≺ Mc, i.e. a < c.

(7-III) < Well-Orders Lγ . Let L′ ⊆ Lγ , L′ 6= ∅. Pick a ∈ L′ and de�ne
L′′ ≡ {x | (x ∈ IS L′ a <)∨ (x =X a)}. If M ′ is a witnessing γ-set of a, then (by
step (6)) L′′ ⊆ M ′. Since L′′ is not empty (it has at least a) and is a subset of a
well-ordered M ′, L′′ has a minimal element, which (because of the de�nition of
L′′) must be a minimal of L′ as well.



(7-IV) Lγ Is a γ-Set. Let a ∈ Lγ , Ma be its witnessing γ-set for <; let
B ≡ IS Ma a < and let A ≡ IS Lγ a <. We will show that A = B; from this will
follow that γ({A) =X γ({B) =X a.

� Let x ∈ A. Then x < a, so there is a containing γ-set Mx, such that Mx ≺
Ma. So, x ∈ Ma and x < a, thus x ∈ B.

� Let x ∈ B. Then it is a γ-element, since it belongs to Ma, so x ∈ A.

(7-V) X ⊆ Lγ . If the Set X is not inhabited, then X = ∅ and trivially X ⊆ Lγ .
If the Set X is inhabited, then let x ∈ X and let x 6∈ Lγ . Then, x ∈ {Lγ ,

thus this complement is not empty, ne : nonempty{Lγ , and we can de�ne

m : X

m ≡ γ({Lγ , ne)

Now, the relation < makes m larger than all elements in the subset:

L′ : P
L′ ≡ {x | (x ∈ Lγ) ∨ (x =X m)}

It is not hard, but it takes some work to check that L′ is a γ-set for < (for
details, see the formalisation). Since m ∈ L′, m is a γ-element, thus it must be
that m ∈ Lγ , which is a contradiction. So, indeed, X ⊆ Lγ , and X is well-ordered.

4 Formalisation

The presented proof served as a sketch for a formalisation [13] that was checked
using AgdaLight [14], a version of the Agda [15] proof checker for constructive
type theory.

In Agda a proof term is not constructed by using tactics, but is directly
given. We use nested let-expressions and explicit type annotations to give struc-
ture to the proofs. This style of writing comes close to the requirements of Leslie
Lamport's proof style[16]. We hope to have produced a readable formalised doc-
ument.

Further work of the formalisation is possible, especially in respect to handling
more systematically subsets created by set comprehension.

5 Related Work

In [17], Peter Aczel has shown how to interpret full Zermelo-Fraenkel set theory
in constructive type theory + LEM. The type theory used is a standard one
(with W), thus stronger than the one we use.

In [18], Per Martin-Löf shows that in type theory, the extensional axiom of
choice is equivalent to Zermelo's axiom of choice. As a consequence of the work
from Peter Aczel, full ZFC can be interpreted in constructive type theory +
ExtAC.
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